S1P4 Receptor Mediates S1P-Induced Vasoconstriction in Normotensive and Hypertensive Rat Lungs

Abstract

This study aimed to identify receptors mediating sphingosine-1-phosphate (S1P)-induced vasoconstriction in the normotensive and chronic hypoxia-induced hypertensive rat pulmonary circulation. In isolated perfused lungs from normoxic rats, infusion of S1P caused a sustained vasoconstriction, which was not reduced by combinational pretreatment with the dual S1P1 and 3receptor antagonist VPC23019 and the S1P2 receptor antagonist JTE013. The S1P4 receptor agonists phytosphingosine-1-phospate and VPC23153, but not the dual S1P1 and 3 receptor agonist VPC24191, caused dose-dependent vasoconstrictions. In hypertensive lungs from chronically hypoxic rats, the vasoconstrictor responses to S1P and VPC23153 were markedly enhanced. The S1P4 receptor agonist VPC 23153 caused contraction of isolated pulmonary but not of renal or mesenteric arteries from chronically hypoxic rats. S1P4 receptor protein as well as mRNA were detected in both normotensive and hypertensive pulmonary arteries. In contrast to what has been reported in the systemic circulation and mouse lung, our findings raise the possibility that S1P4 receptor plays a significant role in S1P-induced vasoconstriction in the normotensive and hypertensive rat pulmonary circulation.

Read the full article online

Topics

Pulmonary Circulation
Receptors
Vasoreactivity: Vasoconstriction and Vasodilatation

Authors

Hiroki Ota, Michelle A. Beutz, Masako Ito, Kohtaro Abe, Masahiko Oka, Ivan F. McMurtry

Published in:

Pulmonary Circulation Vol 1: No 3 cover image

September 2011

Pulmonary Circulation Vol 1: No 3

View this journal

Our research platform is the world.

Through worldwide collaboration, we can begin to answer the question of a global disease.

Join the PVRI
standard-example-image.jpg