Vasodilator responsiveness in idiopathic pulmonary arterial hypertension: identifying a distinct phenotype with distinct physiology and distinct prognosis

PVRI Member Authors: David Langleben, Stylianos Orfanos


Within the cohort of patients suffering from idiopathic pulmonary arterial hypertension (IPAH) is a group that responds dramatically (VR-PAH) to an acute vasodilator challenge and that has excellent long-term hemodynamic improvement and prognosis on high dose calcium channel blockers compared with vasodilator non-responders (VN-PAH). For the purposes of diagnosing VR-PAH, there is to date no test to replace the acute vasodilator challenge. However, recent studies have identified markers that may aid in the identification of VR-PAH, including peripheral blood lymphocyte RNA expression levels of desmogelin-2 and Ras homolog gene family member Q, and plasma levels of provirus integration site for Moloney murine leukemia virus. Genome wide-array studies of peripheral blood DNA have demonstrated differences in disease specific genetic variants between VR-PAH and NR-PAH, with particular convergence on cytoskeletal function pathways and Wnt signaling pathways. These studies offer hope for future non-invasive identification of VR-PAH, and insights into pathogenesis that may lead to novel therapies. Examination of the degree of pulmonary microvascular perfusion in PAH has offered additional insights. During the acute vasodilator challenge, VR-PAH patients demonstrate true vasodilation with recruitment and increased perfusion of the capillary bed, while VN-PAH patients are unable to recruit vasculature. In the very few reports of lung histology, VR-PAH has more medial thickening in the precapillary arterioles, while VN-PAH has the classic histology of PAH, including intimal thickening. VR-PAH is a disorder with a phenotype distinct from VN-PAH and other types of PAH, and should be considered separately in the classification of PAH.

Published in:

Pulmonary Circulation Vol 7: No 3 cover image

September 2017

Pulmonary Circulation Vol 7: No 3

View this journal

Our research platform is the world.

Through worldwide collaboration, we can begin to answer the question of a global disease.

Join the PVRI