Pharmacogenomics and placebo response in randomized clinical trials

Kathryn T. Hall, PhD, MPH
Division of Preventive Medicine
Brigham and Women’s Hospital
Harvard Medical School
No disclosures
Overview

• Placebos in clinical trials
• What neuroimaging and pharmacology tell us about placebos
• \textit{COMT} and placebo response in IBS
• \textit{COMT} pharmacogenomic effects in other diseases and conditions
 - CVD, cancer, chronic fatigue, memory
• Additivity and the placebo response in clinical trials
 - Other genes - \textit{FHIT}
 - Other diseases - Asthma and \textit{BBS9}
Placebos in clinical trials

- Regression to the mean
- Natural history of disease
- Placebo effects
- Drug – Placebo = Drug efficacy
Placebo response pathways involve dopamine and opioid signaling

- Brain regions associated with pain, cognition, movement

- Response to placebo can be modified by drugs like naloxone

THE MECHANISM OF PLACEBO ANALGESIA

Summary

The effect of naloxone on dental postoperative pain was studied to examine the hypothesis that endorphins mediate placebo analgesia. All patients had extraction of impacted mandibular third molars with diazepam, N₂O, and local block with mepivacaine. 3 h and 4 h after surgery naloxone or a placebo was given under randomised, double-blind conditions. Pain was evaluated on a visual analogue scale. Patients given naloxone reported significantly greater pain than those given placebo. Patients given placebo as their

THE LANCET, SEPTEMBER 23, 1978

Catechol-O-methyltransferase (COMT) metabolizes catechol-containing molecules.
COMT val158met
rs4680

G = valine
high-activity

A = methionine
low-activity

val/val
high-activity
less dopamine
epinephrine and
norepinephrine
catechol estrogen

val/met
intermediate

met/met
low-activity
more dopamine
epinephrine and
norepinephrine
catechol estrogen
COMT associated with placebo effects in IBS

Hall et al., PLoS ONE. 2012

Catechol-O-Methyltransferase val158met Polymorphism Predicts Placebo Effect in Irritable Bowel Syndrome
A Randomized Trial of Low-Dose Aspirin in the Primary Prevention of Cardiovascular Disease in Women

Major CVD events
Placebo group – 522
Aspirin group – 477

Aspirin effect non-significant
RR 0.91, CI [0.80-1.03], P=0.13
COMT associated with major CVD in the placebo arm

Hall et al., *Atherosclerosis Thrombosis and Vascular Biology*. 2014
Catechol-O-methyltransferase (COMT) metabolizes catechol-containing molecules.
COMT has differential effects with randomized placebo and aspirin

Placebo
n=5,814

Aspirin
n=5,815

Vitamin E
n=5,863

Aspirin + Vitamin E
n=5,802

Hall et al., ATVB. 2014
Is this a placebo effect or natural history?

- Regression to the mean
- Natural history of disease
- Placebo effects
COMT in MESA
The Multi-Ethnic Study of Atherosclerosis

- rs4818: P = 0.02
- rs4680: P = 0.46

Testosterone

Sulfatase → CYP19a1

Estrogen-Sulfate → Estrogens → TPH1, 5-HT1B, SERT

Serotonin, Estrogen, Hypoxia, SUGEN + Hypoxia, Shear Stress

CYPs/CYP1B1

16α-hydroxyestrogens → 2-, 4-hydroxyestrogens

ECs, PASMCs, PAFs

COMT

2-, 4-methoxyestrogens

+/− Proliferation of Pulmonary Arterial Cells

Austin et al. Pulmonary circulation. 2013
rs4680	Hormone replacement therapy (HRT) use ever							
	Race/ethnicity	Total (%)	met/met	val/met	val/met	No HRT	Ever HRT	P_{interaction}
	Overall	1701 (55.4)	296 (57.7)	723 (51.8)	521 (47.1)	1.14 [0.66-1.95]	0.75 [0.56-1.02]	0.07 0.26
	White	772 (64.1)	205 (66.8)	381 (63.0)	186 (62.5)	2.39 [1.42-4.01]	0.72 [0.49-1.04]	0.08 2.00E-04
	Black	419 (50.9)	45 (50.6)	158 (47.9)	181 (46.2)	0.93 [0.57-1.53]	0.96 [0.47-1.95]	0.91 0.43
	Hispanic	302 (45.1)	39 (41.5)	138 (40.8)	91 (39.9)	0.83 [0.54-1.28]	0.59 [0.22-1.61]	0.31 0.26
	Asian	137 (39.6)	7 (30.4)	46 (37.4)	63 (32.6)	0.81 [0.30-2.19]	0.88 [0.30-2.61]	0.82 0.24

<table>
<thead>
<tr>
<th>Aspirin</th>
<th>No HRT HR [95% CI], P</th>
<th>Ever HRT HR [95% CI], P</th>
<th>P_{interaction}</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 3 days/week</td>
<td>3.02 [1.38-6.58], 0.006</td>
<td>0.46 [0.25-0.85], 0.01</td>
<td>0.61</td>
</tr>
<tr>
<td>≥ 3 days/week</td>
<td>2.25 [0.97-5.24], 0.06</td>
<td>1.27 [0.69-2.35], 0.45</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Hall et al., JAHA. 2019
COMT and cardiometabolic disease

<table>
<thead>
<tr>
<th>Risk Factor/Condition</th>
<th>PMID</th>
</tr>
</thead>
<tbody>
<tr>
<td>HbA1C</td>
<td>27282867, 29225702</td>
</tr>
<tr>
<td>Triglycerides</td>
<td>25035343</td>
</tr>
<tr>
<td>Hypertension</td>
<td>25035343, 21633377, 21776034</td>
</tr>
<tr>
<td>Fibrinogen</td>
<td>31838976</td>
</tr>
<tr>
<td>Apolipoprotein B</td>
<td>25035343</td>
</tr>
<tr>
<td>ICAM1</td>
<td>25035343</td>
</tr>
<tr>
<td>Type 2 diabetes</td>
<td>27282867</td>
</tr>
<tr>
<td>Pre-eclampsia</td>
<td>21355050</td>
</tr>
</tbody>
</table>
Vitamin E in the Primary Prevention of Cardiovascular Disease and Cancer
The Women’s Health Study: A Randomized Controlled Trial

Lee et al. NEJM 2005
COMT has differential effects with randomized placebo and vitamin E in CVD prevention

Hall et al., ATVB. 2014
COMT differential effects in 2 randomized trials of placebo and vitamin E for cancer prevention (ATBC and WHS)

Hall et al., JNCI 2019
placebo > clonidine in Chronic Fatigue Syndrome

- CFS:
 - higher catecholamine levels
 - overactive sympathetic nervous system

- Clonidine:
 - α_2-adrenergic receptor agonist
 - lowers blood pressure
 - lower norepinephrine levels

- The primary outcome:
 - Steps per day after 8-weeks of treatment

Sulheim et al., JAMA Pediatrics 2014
val/val patients took 2400 fewer steps on clonidine than placebo

(\(P_{\text{interaction}} = 0.04\))

Additivity?
Is this one reason why trials fail to show benefit?

Tolcapone a COMT inhibitor appears to modify placebo response?

N=67

Farrell et al., *Biological Psychiatry* 2012
STABILITY and SOLID-TIMI52
Darapladib, a Lp-PLA₂ inhibitor, failed to demonstrate efficacy beyond placebo for the primary endpoint MACE

Yeo et al. PloS ONE. 2017
Other diseases - asthma

Childhood Asthma Management Program (CAMP) adolescents randomized and followed for 4 years
1. **Placebo** – matched budesonide or nedocromil placebo inhalers
2. **Budesonide** – anti-inflammatory corticosteroid with potent glucocorticoid activity
3. **Nedocromil** – mast cell stabilizer, inhibiting degranulation of mast cells

GWAS of Subjective outcome (coughing/wheezing) in the Placebo arm

BBS9 implicated in lung development and ciliogenesis

P_{interaction} = 1.48E-07

Wang et al. *CPT* 2019
Summary: drug, placebo arms outcomes not always additive

Hall and Loscalzo, CPT, 2019
Pharmacogenomics and placebo response

• Genes appear to influence response to placebo, the placeboome
• Differential association with randomized drug and placebo response is common and can be attributed to:
 ➢ Natural history of the disease
 ➢ Placebo effects
 ➢ Placebo-pharmacogenomic effects
• These differential effects can result in a null trial
• Pharmacogenomics can identify populations for benefit/harm
• Translation = Precision Medicine